Application
The Zurn Wilkins Model ZW209EX Pilot Operated Pressure Reducing Valve is designed for many applications where the reduction of high inlet pressures to safe and stable outlet pressure is required. The pilot assembly reacts to changes in downstream pressure allowing the main valve to modulate between the closed and open position ensuring a constant downstream set pressure. Once the downstream pressure reaches the pilot setting, the main valve will seal shut preventing damage downstream. Pressure regulation is not dependent upon flow rate, resulting in minimal pressure loss through the valve. In addition the Model ZW209EX comes standard with epoxy coating internally and externally for corrosion protection.

Standards Compliance:
- ANSI/AWWA C530
- Meets the requirements of NSF/ANSI 61*
**(0.25% MAX. WEIGHTED AVERAGE LEAD CONTENT)

Materials
Main Valve Body Ductile Iron ASTM A536
Main Valve Bonnet Ductile Iron ASTM A536
Disc Guide Stainless Steel
Seat Stainless Steel
Disc Buna-N Rubber
Diaphragm Nylon Reinforced Buna-N
Stem Stainless Steel
Spring Stainless Steel

*The closing speed control (optional) on this valve should always be open at least three (3) turns off its seat.

Standard Features
- Epoxy Coated, FDA Approved
- Pilot Assembly
- ANSI Class 150 Flanges
- Copper Tubing and Brass Fittings

Schematic Diagram

Sizes
GLOBE STYLE BODY SEE CONNECTIONS BELOW

Options
(Add suffix letters to ZW209EX)

Function
- C - 40XL Hydraulic Check with Isolation Valve
- L - SC1 Closing Speed Control*
- O - SC1 Opening Speed Control (Standard 1 1/4" - 4")

Body
- A - Angle Style Body 1-1/4"-10", DN32-DN250
- R - Reduced Port Body Flanged 3"- 10", DN80-DN250

Connections
Threaded ends 1 1/4" - 3", DN32-DN80: 400 psi, 2760 kpa, 27.6 bar max
- TH - NPT Threaded
- BS - Threaded British Pipe Parallel BSPP/G size ISO
- BT - Threaded British Pipe Parallel BSPT/Rc size ISO
Flanged 1 1/2" - 16", DN40-DN400: 250 psi, 1725 kpa, 17.3 bar max (blank) ANSI Class 150
- BSD - BS10/AS2129 Table D Flanges
- BSE - BS10/AS2129 Table E Flanges
- PN6 - ISO Class PN6 Flanges
- PN10 - ISO Class PN10 Flanges
- PN16 - ISO Class PN16 Flanges
Flanged 1 1/2" - 16", DN40-DN400: 400 psi, 2760 kpa, 27.6 bar max
- BSF - BS10/AS2129 Table F Flanges
- BSH - BS10/AS2129 Table H Flanges
- PN25 - ISO Class PN25 Flanges
- Y - ANSI Class 300 Flanges
Grooved 1 1/2" - 10", DN40-DN250: 300 psi, 2070 kpa, 20.7 bar max
- G - (48.3, 60.3, 73.0, 88.9, 114.3, 168.3, 219.1, 373.0 mm pipe OD)
- BG - Grooved 2-1/2" or 6" (76.1, 165.1 mm pipe OD)

Main Valve Options
- V - Viton Rubber Internals, rated 180°F (1-1/4"-6"), only available with “LP” or “HP” Option
- Z - ZPI Visual Position Indicator

Pilot System
- LP - 5-25 psi Low Pressure Range PV-PRD Pilot (replaces NR3XL)
- HP - 30-300 psi High Pressure Range PV-PRD Pilot (replaces NR3XL)
- RV - Pilot on Reverse Side
Reduced Port Main Valve Dimensions

<table>
<thead>
<tr>
<th>DIM</th>
<th>FULL PORT</th>
<th>VALVE SIZE INCHES (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3" (80)</td>
</tr>
<tr>
<td>A</td>
<td>Class 150 Flange</td>
<td>10 1/4</td>
</tr>
<tr>
<td></td>
<td>Class 300 Flange</td>
<td>11</td>
</tr>
<tr>
<td>B</td>
<td>Dia</td>
<td>6 3/4</td>
</tr>
<tr>
<td>C</td>
<td>Max</td>
<td>6 3/8</td>
</tr>
<tr>
<td>D</td>
<td>Class 150 Flange</td>
<td>3 3/4</td>
</tr>
<tr>
<td></td>
<td>Class 300 Flange</td>
<td>4 1/8</td>
</tr>
<tr>
<td>E</td>
<td>NPT Body Tap</td>
<td>3/8</td>
</tr>
<tr>
<td>F</td>
<td>NPT Cvr. Plug Tap</td>
<td>3/8</td>
</tr>
<tr>
<td>G</td>
<td>NPT Cvr. Tap</td>
<td>3/8</td>
</tr>
<tr>
<td></td>
<td>Valve Stem Internal Thread</td>
<td>10-32</td>
</tr>
<tr>
<td></td>
<td>Stem Travel (in)</td>
<td>7/16</td>
</tr>
<tr>
<td></td>
<td>Approx. Wt. (lbs)</td>
<td>22</td>
</tr>
</tbody>
</table>

Operation

The Model ZW209EX utilizes a pressure reducing pilot valve that installs on the discharge side of the control circuitry. The pilot is a direct acting, normally open, spring loaded, diaphragm actuated valve. The operation of the ZW209EX begins with accurately sizing the valve, then fine tuning the control circuit by adjusting the pilot spring to the desired downstream pressure. Inlet pressure is piped to the inlet port of the pressure reducing pilot. A sensing line runs internally from the discharge side of the pilot to its lower control chamber under the diaphragm. Thus, downstream pressure exceeding the preset acts to close the pilot while the adjustable spring seeks to keep it open. The result is a modulating action in the pilot that is transmitted to the bonnet of the main valve. This creates a mirror modulation of the diaphragm assembly in the main valve. Downstream pressure is maintained within narrow limits regardless of changing flow rates or varying inlet pressures.
Suggested flow calculations are based on flow through Schedule 40 Pipe. Maximum continuous flow is approx. 20 ft./sec (6.1 meters/sec) & maximum intermittent is approx. 25 ft./sec (7.6 meters/sec) and minimum continuous flow is approx. 1.25 ft./sec (0.4 meters/sec). Many factors should be considered in sizing pressure reducing valves including inlet pressure, outlet pressure and flow rates.

Notice:
In cases where design flow falls below the minimum continuous flow rate, a low flow by-pass shall be installed.

Typical Installation

![Diagram of Typical Installation](https://via.placeholder.com/150)

Notice:
In cases where design flow falls below the minimum continuous flow rate, a low flow by-pass shall be installed.

Specifications

The Pressure Reducing Valve shall be a diaphragm actuated, pilot controlled valve. The main valve body shall be ductile iron ASTM A 536. The stem of the basic valve shall be guided top and bottom. The diaphragm shall not be used as a seating surface. All internal and external ferrous surfaces shall be coated with a high quality, fusion epoxy coating. The pilot control shall be field adjustable from 15 psi to 150 psi. The valve shall be certified to NSF/ANSI 61. The Pressure Reducing Valve shall be a ZURN WILKINS Model ZW209EX.
* Notes for Body Minimum Friction Loss Chart:
Minimum inlet pressure is 10 psi higher than set point or the additional body friction loss at intended flow, whichever is higher. (friction loss may be important at flows above 20 ft/s)
Example: A 6” valve intended to flow 2000 GPM at 150 psi has a friction loss of 20 psi at 2000 GPM. The minimum inlet pressure would be 150 + 20 = 170 psi. When inlet pressure is below set point, the outlet pressure will be the pressure at the inlet minus the friction loss.